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T h e  s teady s ta tes  o f  a s imple  non l inea r  chemical  sys t em kept  fa r  f r om 
equ i l ib r ium are  analyzed.  A s t a n d a r d  mac roscop ic  analys is  shows  tha t  the  
non l inea r i ty  in t roduces  an  instabi l i ty caus ing  a t rans i t ion  ana logous  to a 
t h e r m o d y n a m i c  f i rs t -order  phase  t rans i t ion .  N e a r  this  t rans i t ion  the  sys tem 
exhibi ts  hysteres is  be tween two a l te rnat ive  s teady  states .  F luc tua t i ons  are  
in t roduced  into this mode l  us ing  a s tochas t ic  mas t e r  equa t ion .  The  so lu t ion  
o f  this  m a s t e r  equa t ion  is un ique ,  p reven t ing  two a l te rnat ive  exact ly s table 
states.  However ,  a quas i -hys teres is  occurs  involving t rans i t ions  between 
a l ternat ive  me tas t ab le  s teady states  on  a t ime scale tha t  is longer  t h a n  tha t  
o f  the  f luc tua t ions  a r o u n d  the  m e a n  s teady s ta te  va lues  by a fac tor  o f  the  
fo rm  e ~ ,  where  Aft is the  he igh t  o f  a general ized t h e r m o d y n a m i c  potent ia l  
barr ier  be tween the  two states .  In  the  t h e r m o d y n a m i c  limit this t ime scale 
t ends  to infinity and  we have  essential ly two a l ternat ive  s table s teady  
states.  
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1. I N T R O D U C T I O N  

The properties of the far-from-equilibrium steady states of nonlinear systems 
form the subject of considerable current interest. 2 The possibility of creating 
a branch of nonequilibrium stationary states in a nonlinear system by driving 
the thermodynamic branch past an instability has been discussed in detail. (1-4) 
Such an instability may be symmetry breaking and lead to a new regime 
with an increase in order. Striking examples of this effect have been shown 
to occur in laser action (5-8~ and in certain autocatalytic chemical reactions. (v-a) 
These transitions are analogous to second-order phase transitions. 

Other instabilities which are not symmetry breaking but involve transi- 
tions between two nonequilibrium steady states also arise in certain systems. 
These transitions may be considered analogous to first-order phase transi- 
tions. A discussion of both first- and second-order phase transitions in 
chemical reactions has been given by Schl6gl, (9) who adopted a macroscopic 
approach. A microscopic treatment of second-order phase transitions in 
chemical reactions has recently been given by McNeil and Walls. (1~ It is the 
aim of this paper to present a microscopic analysis of a first-order phase 
transition in a model chemical reaction using a stochastic Markovian 
master equation approach. 

2. A N O N L I N E A R  C H E M I C A L  R E A C T I O N  

A chemical system may be kept far from equilibrium if it is open to 
matter transport with its environment. As an example of such a system, we 
consider the following nonlinear reaction system: 

kl 
A + 2 X . "  3X (1) 

k2 

k3 
h ~  " X (2) 

k4 

This describes the conversion of  the initial reactant A into X by two different 
processes: by a simple monomolecular degradation or by an autocatalytic 
trimolecular mechanism. Both these reactions are reversible, the rate con- 
stants for the various reactions being given by the k~. Here the system is 
open to interaction with an infinite reservoir of reactant A, so that the 
concentration of A is kept constant in the reacting system. This might be 
realized physically in several ways. (1) The reactions occur between rarified 
gases which are maintained isothermally homogeneous in a stirring vessel 
which is fed with A so as to keep its concentration constant. (2) The reactions 

z Since the  comple t i on  o f  this  paper ,  ou r  a t t en t ion  ha s  been  d r a w n  to a pape r  by  
N i t zan  et al.,C3~ who  have  independen t ly  r ep roduced  s o m e  of  the  qual i ta t ive  features  o f  
our results. 
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occur in a system where the concentration of X is always much less than that 
of A, whose concentration is thus effectively undepleted by the reactionsJ 6~ 
This requires that the reactions be very inefficient in the forward direction. 
(3) The system is so small that the diffusion of  A and X is faster than the 
reactions between them. 

'To include fluctuations, we require an equation of motion for the 
probability function P ( x ,  t )  that there are x molecules of  species X at time t. 
We may derive a stochastic master equation for P ( x ,  t )  under the Markovian 
assumption using now standard techniques. (1~,12) This yields the following 
equation : 

~t P ( x ,  t )  = [k~A(x  - 1)(x - 2) + k 3 X ] P ( x  - 1, t )  

- [ k~Ax (x  - 1) + kaA  + k 2 x ( x  - 1)(x - 2) + k 4 x ] P ( x ,  t )  

+ [k~x(x - 1)(x + l) + k~(x + l )]P(x + 1, t) (3) 

which will be referred to as the master equation. 
An exact analytic solution of this master equation in terms of  elementary 

functions does not exist except in the steady state. However, various approxi- 
mation methods can be used to obtain information about the dynamical 
behavior of the system. 

3. M A C R O S C O P I C  EQUATIONS,  S T O C H A S T I C  M E A N  VALUES 

Equations of motion for the moments of the distribution function 
P ( x ,  t )  can be derived directly from the master equation. The equation of 
motion for the mean number of  X molecules reads 

~-} ( x )  = k ~ A ( ( x  2) - ( x ) )  - k~((x3~ - 3 ( x  2) + 2(x))  

+ k3A  - k 4 ( x )  (4) 

Neglecting fluctuations, that is, setting {x2~ = (x~ 2 and (x3~ = (x~ 3, and 
for (x~ >> 1, this equation reduces to 

d X / d t  = - k z X  3 + k l A X  2 - k 4 X  + k3A ,  X - ~  ( x )  (5) 

which is exactly the macroscopic rate equation for the chemical reactions (1) 
and (2) derived from the law of  mass action. ~9~ The solution of Eq. (5) with 
the initial condition X(0) = Xo is 

7- x l /  \Xo x~ /  ~xo - x3 /  

= exp{-k2(X1 - X2) (Xz  - X3)(X3 - X~)t}  (6) 

where X1, )(2, and X3 are the roots of  

k 2 X  3 - k l A X  ~ + k ~ X -  k3A  = 0 (7) 
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with )(3 >/ X2 >/ X1. The macroscopic dynamical behavior described by 
Eq. (6) has been discussed in Ref, 13. 

The steady state solutions of Eq. (6), X s, are 

Xo = x2, x s =  x~ (8) 

A normal mode analysis of Eq. (6) shows that the solution X~ is unstable 
with respect to small perturbations. This will be apparent when fluctuations 
are included. 

This "deterministic" type of analysis predicts the existence of one or 
three steady states, depending on the parameters that are the coefficients of 
X in Eq. (7). If we define k lA /k2  = B, k~/k2 = R, and ka/kl  = P, then P 
and R are determined by the details of the reaction mechanisms of reactions 
(l) and (2) whereas B is determined by A and will be referred to as the pump 
parameter. The dependence of X on B is illustrated in Fig. 2 for various 
values of R and P. The case of P = R means that the net rates of reactions 
(1) and (2) separately vanish, and a true chemical equilibrium exists with 
X = B .  

It is also apparent from Eq. (8) that a hysteresis in X may occur as X is 
varied; if B is increased starting from zero (see Fig. 3), the steady state on 
the lower branch OP~ eventually coincides with the steady state on the middle, 
unstable branch P1P2 and X jumps to the only possible stable branch for 
B > B~, namely P2P3. A similar reasoning shows that X undergoes a 
downward transition P2 -+ P2' at a smaller B, B2, when B is decreased from 
some large value. 

4. S T E A D Y  S T A T E  S O L U T I O N  OF T H E  M A S T E R  E Q U A T I O N  

Although the gross features of the phase transition are indicated by the 
preceding "deterministic" mean value analysis: which completely ignored 
fluctuations, considerably more information is contained in the number 
probability function P(x ,  t) satisfying the master equation (3), It can be 
shown that a stationary solution PS(x) of Eq. (3) is unique, stable, and time 
independent31~> Thus, on setting ~PS(x)/~t = 0 in Eq. (3), we obtain the 
following set of difference equations: 

t+(x - 1)P~(x - 1) + t _ ( x  + 1)PS(x + 1) - [t_(x) + t+(x)lP~(x) = 0 

t+(0)P"(0) + t_(2)P~(2) - [t_(1) + t+(1)]P~(1) = 0 
t _ ( 1 ) e s ( 1 )  - t + ( o ) e s ( o )  = o 

(9) 
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where we have denoted 

t+(x) = k i A x ( x  - 1) + k~A, t _ ( x )  = lc x(x - O ( x  - 2) + 
( 1 o )  

where 

3"x { t_(i) ] (14) 

An asymptotic form for q~(x) and hence P~(x) can be obtained from 
Eq. (13) by replacing the sum by an integral. Application of the Euler- 
Maclaurin summation formula yields 

~(x)  z (x - 1)ln{(x + 1)[x(x - 1) + R]/Be[x(x - 1) + P]} 

1 - lnB+~ln(x+ 1) 

+ 2~/R arctan(~/R/x) - 2~/P arctan(~/P/x) (15) 

A similar form may be obtained from Eq. (11) by factoring the terms 
inside the product sign into gamma functions and using Stirling's approxima- 
tion. A similar model of a chemical reaction has been analyzed using entirely 
different methods (Hamilton-Jacobi techniques) by Kitahara, (~6~ who 
obtained an equivalent result to Eq. (15). 

The turning points of the stationary distribution may be deduced by 
noting that P(x )  = P ( x  - 1) at the turning points, which together with the 
detailed balance condition (12) yields 

B(x)  = x[(x - 1)(x - 2) + R]{(x - 1)(x - 2) + P1-* (16) 

The solution of the set of equations (9) is 

ps(o) ~ -  ~ t+(i - l) P~(x) ~=1 E-~)  (11) 

The system possesses the property of detailed balance in the stationary 
state, as can be seen from Eq. (I 1), which implies 

t _ (x  + 1)PS(x + 1) = t+(x)PS(x) (12) 

This is a general property of systems for which only transitions between 
neighboring states in a one-dimensional array are allowed with vanishing 
transitions at the boundaries of the configuration space. (15~ 

Alternatively, this solution may be expressed in terms of the stationary 
potential q~S(x) (15) defined by 

PS(x) = P~(O) exp[ -  ,~S(x)] (13) 
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Fig. 1. The turning points of the steady state stochastic probabili ty distribution (identical 
with the macroscopic mean number X) are plotted against the pump parameter B for 
various values of RIP and P = 10% H e r e - - -  denotes the stochastic mean values of 
the steady state probability distribution. 

The function x = x(B) found by inverting Eq. (16) gives the turning 
point values corresponding to that value of B for a given P and R and can be 
shown to be either single-valued for all B i fR < 9P or triple-valued over some 
closed interval of  B if R > 9P. The turning points of  the steady state distribu- 
tion are plotted in Fig. 1. These lie along precisely (for large X) the same 
curve as the steady state mean values obtained from the deterministic 
equation (5). 

Numerical calculation of (x ) ,  the mean of the steady state distribution 
P~(x) defined by Eq. (11), is also shown in Fig. l. The interesting feature is 
the very small range of B over which (x )  shows a rapid increase. A typical 
variation of PS(x) with pump parameter  B in the region of this transition is 
shown in Fig. 2. Corresponding to the almost discontinuous jump in (x )  
with increasing B, the strong peak of PS(x) shifts rapidly from the lower to 
upper branch. Some interesting features of  this transition can be seen from 
the equation 

B(~ /~B)<xb  = <x ~+1) - <x)<xb  07 )  

relating the steady state moments of  the distribution (11). For k = 1 we see 
that the variance of the distribution is directly proportional to the slope 
of the ( x )  vs. B curve 

,~* = B ~<x)/aB (18) 

Below the transition point Bc (see Fig. 1) the system is on the lower branch, 
which is asymptotic in the limit of  small x to the line B = Rx/P. This is the 
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Fig. 2. Steady state probability distributions for various values of the pump parameter 
B near the critical point. 

modal value curve for the steady state distribution for the reaction (2) alone. 
This steady state distribution is Poissonian with mean and variance BP/R. 
Similarly, the upper branch is asymptotic to the line B = x, the modal curve 
for the reaction (1) alone. The steady state distribution is Poissonian with 
mean and variance B. 

As the pump parameter  B is increased from zero, the stationary distribu- 
tion corresponds closely to the Poisson distribution in number space associa- 
ted with the linear reaction (2) dominating and inhibiting the nonlinear 
reaction (1). When the critical value Bc is reached the system switches 
abruptly to the upper branch and the nonlinear reaction mechanism domin- 
ates. Equation (17) shows that there are large fluctuations in x at this transi- 
tion point. It may be seen that this change in ( x )  approaches a discontinuity 
with increasing system size. An analogy can be drawn with a liquid-gas 
system by making the correspondence (x )  +~ p (density) and B ~-~ P (pressure), 
and increasing the rate constant R/P corresponds to increasing temperature 
the T. This singularity in the response function ~(x)-~/~B corresponds to a 
singularity in the isothermal compressibility. ~7~ 

The stationary behavior of  the stochastic mean does not of  course 
exhibit a hysteresis (see Fig. 1). This was the result obtained by Turner, ~18~ 
who incorrectly deduced from this that the stochastic analysis predicted an 
absence of hysteresis. 

Although ( x )  is very close to one or other of  the modal values of 
PS(x) (except in the vicinity of Bc), PS(x) is nevertheless bimodal over the 
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Fig, 3. The potential function d?S(x) in the bimodal probability function region shown 
for various values of the pump parameter B. 

entire interval in which x(B) is triple-valued, as can be seen from Fig. 3, 
which shows the potential surface qSS(x, B) defined by Eq. (13) for R = 1.5 
x 105, P = 104, and B ranging from 710 to 830. 

This bimodal  distribution must  be interpreted as follows: The mean 
time spent by the system in any number  state x is [t+(x) + t_(x)] -1, as 
inspection of  Eq. (3) will show. This does not vary appreciably over the 
bimodal  range o f  P~(x). Hence in order to generate a long-time average 
probability distribution like that  of  Fig. 2, the system must spend most  of  its 
time fluctuating a round  either one of  the two maxima, with infrequent 
transitions from one mode to the other as a result of  sufficiently large 
fluctuations in the direction of  the other state. 

An estimate o f  the frequency of  these transitions is made in the next 
section. 

Clearly, if the minimum probabili ty between the two maxima is com- 
paratively small, transitions between states will be quite infrequent. Then the 
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fluctuations around the means are on a much shorter time scale than the 
fluctuations between states. 

We see now how a hysteresis in the (x) ,  B plane may arise from this 
stochastic description. In the bimodal region both states are stable with 
respect to fluctuations below a certain critical size, defined by the distance 
of  the respective maxima from the minimum of  PS(x). A fluctuation greater 
than this size will drive the system into the other state. If  the pump parameter 
is continuously increased from zero along the line OP~ of Fig. l, the system 
will remain on the lower branch (in the mean), until nearly P1, where the 
transition rate from the lower state will have become of  the same order as 
the time spent in this metastable state. This transition rate increases because 
the critical size of the upward fluctuation needed is decreasing. Thus the 
degree of  hysteresis that is likely to be observed depends on how much 
smaller the time scale over which the pump parameter is increased is than 
that of  transitions between bistable states. In terms of the stationary potential 
function 4,~(x) this is clearly seen in Fig. 3, where B is stepped completely 
through the bimodal range. 

5. T IME-DEPENDENT BEHAVIOR 

We return again to the master equation (3), which can be written as a 
matrix equation 

8P/3t  = M P  (19) 

where P is a column vector containing all the P(x ,  t) and M is the transition 
matrix. By seeking solutions of the form 

P(x, t) = 2 P(V)e-~(P)t (20) 
p = 0  

the solution of Eq. (19) becomes an eigenvalue problem, the solution of 
which by numerical methods is in progress. Here we will seek a continuous 
solution to the master equation by replacing it by a continuum differential 
form. ExpandingP(x  - 1, t ) and  P (x  + 1, t ) abou t  P(x,  t), Eq. (3) becomes 

~ e ( x ,  t )  = [ t _ ( x  + 1) - t _ ( x )  - t+ (x )  + t + ( x  - 1)]e(x, t) 
at 

aP(x, t) 
+ [t_(x + 1) - t+(x - 1)] 8x 

o~P(x, t) 
1 [t_(x + 1) + t+(x - 1)] ~2x2 (21) + ~  
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where Eq. (21) has been truncated above second-order derivatives. It is then 
basically on a Fokker-Planck equation for a Markov process in the con- 
tinuous variable x with nonlinear drift and diffusion coefficients. 

Physically this procedure can be justified by scaling x to be independent 
of the system size. Then the coefficients of derivatives of subsequent orders 
in the expansion (21) of the master equation decrease in order of magnitude 
by a factor increasing with the size of the system, (19~ provided the fluctuations 
have their origin in microscopic noncollective effects. ~15~ In this system the 
fluctuations involving transitions between alternative states are in fact of 
this nature and the truncated expansion (21) is really only valid for fluctua- 
tions around one of the local probability maxima. (~~ Nevertheless, by 
making this approximation we preserve the general bistable feature of the 
system without the severe analytic complexity of the full expansion. In any 
case, comparison can be made with the steady state solution obtained with 
that obtained exactly from the master equation. 

Equation (21) is not quite in the usual Fokker-Planck form. However, 
if we assume that x >> 1, we can approximate Eq. (21) very well by 

~x 92 N P(x ,  t) = - {(•)P(x, t)} + ~ {D(x)P(x ,  t)} (22) 

where 

D(x) = �89 - 1) + t_(x)),  ( 2 )  = t+(x - l) - t_(x)  (23) 

The second term in Eq. (22) represents the diffusive effects of fluctua- 
tions about the macroscopic behavior. Defining a probability flux or ensemble 
density flow in configuration space by the one-dimensional continuity 
equation 

OP ~j 
0--7 + ~x = 0 (24) 

Eq. (22) can be integrated to give 

j ( x ,  t) = P(x ,  t ) ( 2 )  - (O/~x){D(x)P(x, t)) (25) 

In the steady state j ( x ,  t) -~ 0, and Eq. (25) yields for the derivative of 
the stationary potential function 

~d/(x) _ 2 t_(x) - t+(x + 1) (26) 
~x t+(x - I) + t_(x)  

since 8D(x)/~x << D(x) for x >> 1. 
To investigate the accuracy of this solution, we recall that we have an 

excellent continuum form for ~(x) [Eq. (15)] obtained from the exact solution 
of the master equation. This yields on differentiation 

84~(x)/Sx = ln{t_(x + 1)/t+(x)} (27) 
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which can be expanded as 

8~(x) = 2[t_(x + 1) -- t+(x) 1 [t_(x + 1) - t+(x)] 3 } 
ax t.t-7G + 1) u t_ (x) + ~ It+ (x + l) + t_ (x) J +. . .  _ (28) 

We see that the approximate solution (26) is the first term of  this series. 
This approximation is generally sufficient provided the drift velocity t_ (x) - 
t+(x) is not too large. Near the stationary points of  the distribution, 
a4 (x)/ax ~ 0 and the agreement is very good indeed. (2m 

We can use this analysis to obtain an estimate of the lifetimes of the 
metastable states and hence of the time scale of  the fluctuations between 
states by adopting a method originally given by Kramers  (2a) and subsequently 
developed by various authors. (2~-z6) 

We find that the ratio of  the time scale of  the fluctuations between the 
metastable states r and the local fluctuations within one of the probability 
maxima rx= is given by 

r/rx2 = 27r(e -A<+) + e-a(-))  -* (29) 

where the activation potentials A (~) are the heights of  the potential barrier 
of  Fig. 3 above the two min ima?  In the thermodynamic limit this ratio 
becomes infinite and we approach the deterministic result of  two essentially 
stable steady states. The derivation of Eq. (29) is given in the appendix. 

This result is similar to that obtained by Landauer v26) for tunnel diodes 
by a slightly different but equivalent method. The similarity with the familiar 
problem of a thermally activated jump across a potential barrier is obvious. 
This approach has been useful in estimating the minimum useful size of  
Esaki diodes as bistable computing devices. (~v) This limit is set by the criterion 
that the critical fluctuation size needed to change the diode state is much 
greater than the magnitude of the thermal fluctuations. 

6. C O N C L U S I O N  

A stochastic analysis of  a first-order phase transition in a model chemical 
reaction has been given using a simple birth-death Markovian type master 
equation. The steady state probability distribution PS(x) is found to be 
bimodal in the region of  the transition from one stable branch to the other. 
It is shown that this microscopic analysis predicts a hysteresis of  a similar 
nature to that predicted by a macroscopic analysis. An approximate solution 
to the time-dependent master equation in the continuum limit yields an 
estimate of  the time scale over which a transition from one metastable steady 
state to the other takes place. This is shown to vary as e A*, where A,~ is the 

a It has been brought to our attention that a similar result has been obtained by Janssen 
using a different method. (2~ 
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height of a generalized thermodynamic potential barrier between the two 
states. In the thermodynamic limit this time scale tends to infinity and we 
have essentially two alternative stable steady states, in agreement with the 
macroscopic results. (9~ 

The model chosen for the chemical reaction assumes an essentially 
infinite coherence length. That  is, no account is taken of spatial effects, such 
as diffusion. A promising approach to include diffusion in stochastic models 
of chemical reactions has recently been advanced. (16,28) Work is at present 
proceeding to include diffusion effects into our present,  mdel. 

A P P E N D I X .  D E R I V A T I O N  O F  EQ.  ( 2 9 )  4 

The derivation of  Eq. (29) is based on the assumption that the equilibra- 
tion process within each well of the potential CS(x) is fast compared to the 
processes that require motion through the unlikely state at x> Thus we 
write 

e(x ,  t) = fl(x, t)PS(x) (A.1) 

where fi(x) is essentially constant within each well and changes only in the 
vicinity of x2. As time progresses, fi(x) relaxes toward unity. 

For a current j in the vicinity of x2 we have 

j = - D(x2) OP(x)/Ox (A.2) 

since D(x) is slowly varying. On combining Eq. (A.1) and (A.2), we can write 

D(x2~S(O ) exp[r dx (A.3) 

Since r is peaked around x~, we can use a saddlepoint type of approxima- 
tion to obtain 

--j [ --2,~1"2 
fi(xa) - 13(x,) O(x2-~(x2) [ ~ J  (A.4) 

The term -r can be written in two ways. From the exact steady state 
solution to the master equation (21) one has 

--r = (l/x2) + O(1/x22) (A.5) 

in the vicinity of x2, whereas Eq. (26) yields 

1 8<2> I (A.6) - r  + x~) = D(x~)- ---~x jx=x~ 

If  we write 

v(x2) x x~ = (x -- x2) ~ (A.7) 
T X 2  = X 2 

4 We wish to thank Dr. R. Landauer for helpful correspondence on the material in the 
Appendix. 
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to describe the (macroscopic) velocity developed as we move away from the 
exact point of instability, Eq. (A.6) becomes 

-r z {D(x2)rx2} -~ (A.8) 

Clearly, rx~ ~ D(x2)  -1  = 2[t+(x2 - 1) + t_(x2)] -a, which is of the order 
of the inverse of the time spent by the system in any particular number state 
near x2. Using, however, the expression for r  given by Eq. (A.5) in Eq. 
(A.4), we obtain 

fl(xa) - f l (x l )  = - j [ D ( x 2 ) p s ( x 2 ) ] -  ~(27rx2) 1/2 (A.9) 

Now we have seen that the stationary distribution peaks are very nearly of 
Poisson shape [see Eq. (17)] whose total probability population N(x~)  is 
related to the modal value by 

N(x~)  = (2~rx~)~/2P(&) (A.10) 

Since we have put P(x, t ) =  f l (x,  t ) P S ( x ) ,  the integrated ensemble 
populations near the maxima at xz and xa are given by 

N ( x l )  = PS(x l ) f i ( x l ) (2~r&)  1/2 
X ( x o )  = P~(xa)fi(xa)(2~rxa) ~12 (A.11) 

Defining "activation potentials" A (-) and A ~ +) by 

e ~(-) = N~(x2) /N~(x2) ,  e A(+) = U~(x3) /N~(x2)  (A. 12) 

where N~(x2)  is a fictitious population defined in formal analogy with Eq. 
(A. 10) as 

N*(x2)  = PZ(x2)(Z~rx2) ~/2 (A.13) 

N~(x2)  is a measure of the exponential inaccessibility of x2 in the region over 
which fi varies appreciably. The activation potentials A are the heights of 
the potential barrier of Fig. 3 above the two minima. In terms of these 
definitions, Eqs. (A.9) and (A.11) become 

fl(xa) - f i (x l )  = - j (Zrrx2)/  U S(x2) D(x2)  

Clearly 

N (x2) = f i ( x l ) e~( -  )N~(x2) 

N (xa) = f i(xa)e A( + ) N ~(x2) 

(A.14) 

(A.15) 

(A.16) 

j = -- ~ N ( x l ) / ~ t  = ~N(xa ) /~ t  (A. 17) 

which combined with Eqs. (A.14)-(A.16) yields the two coupled first-order 
differential equations 

- j = D ( x 2 ) [ U ( x a ) e -  A(-) _ N ( x l ) e -  ~(+)](2~rx2) -1 = N i x 1 )  = - U(x3 )  

(a.18) 
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the solutions o f  which are 

U ( x 2 )  = U (xl)O - e - U nitial(xl)e 

U(xs)  = N~(xa)(I - e -tl~) - Ni,~lti~l(x3)e -tI~ 

where ~.-1 = D(x2)(e-a~-) + e-ar 

which in view of  Eq. (A.8) can be wri t ten 

= + 

which is the result  (29). 

(A.19) 

(A.20) 

(A.21) 
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